# 实际例子如下 SELECT pgml.rank('mixedbread-ai/mxbai-rerank-base-v1', 'How do I write a select statement with pgml.transform?', array_agg("chunk"), '{"return_documents": false, "top_k": 6}'::jsonb || '{}') AS rank
文本生成
1 2 3 4 5 6 7 8 9 10 11 12 13
# 算子为pgml.transform # SELECT pgml.transform( # task => TEXT OR JSONB, -- Pipeline initializer arguments # inputs => TEXT[] OR BYTEA[], -- inputs for inference # args => JSONB -- (optional) arguments to the pipeline. # )
# 实际例子如下 SELECT * FROM pgml.transform( task => 'text-generation', inputs => ARRAY['In a galaxy far far away'] );
完整应用方案
第一步 创建一张表,用于存储文档切分的结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14
CREATE TABLE chunks(id SERIAL PRIMARY KEY, chunk text NOT NULL, chunk_index int NOT NULL, document_id int references documents(id));
INSERT INTO chunks (chunk, chunk_index, document_id) SELECT (chunk).chunk, (chunk).chunk_index, id FROM ( SELECT pgml.chunk('recursive_character', document, '{"chunk_size": 250}') chunk, id FROM documents) sub_query;
第二步 创建向量表,把chunk进行embedding并存储
1 2 3 4 5 6 7 8 9 10 11 12
CREATE TABLE embeddings ( id SERIAL PRIMARY KEY, chunk_id bigint, embedding vector (1024), FOREIGN KEY (chunk_id) REFERENCES chunks (id) ON DELETE CASCADE );
INSERT INTO embeddings(chunk_id, embedding) SELECT id, pgml.embed('mixedbread-ai/mxbai-embed-large-v1', chunk) FROM chunks;
WITH embedded_query AS ( SELECT pgml.embed('mixedbread-ai/mxbai-embed-large-v1', 'How do I write a select statement with pgml.transform?', '{"prompt": "Represent this sentence for searching relevant passages: "}')::vector embedding ) SELECT chunks.id, ( SELECT embedding FROM embedded_query) <=> embeddings.embedding cosine_distance, chunks.chunk FROM chunks INNER JOIN embeddings ON embeddings.chunk_id = chunks.id ORDER BY embeddings.embedding <=> ( SELECT embedding FROM embedded_query) LIMIT 6;
第四步 对数据库中的相似片段进行总结生成
1 2 3 4 5 6 7 8 9 10 11 12 13
# 省略上述检索步骤 SELECT pgml.transform ( task => '{ "task": "conversational", "model": "meta-llama/Meta-Llama-3.1-8B-Instruct" }'::jsonb, inputs => ARRAY['{"role": "system", "content": "You are a friendly and helpful chatbot."}'::jsonb, jsonb_build_object('role', 'user', 'content', replace('Given the context answer the following question: How do I write a select statement with pgml.transform? Context:\n\n{CONTEXT}', '{CONTEXT}', chunk))], args => '{ "max_new_tokens": 100 }'::jsonb) FROM context;